Thymic alterations in EphA4-deficient mice.
نویسندگان
چکیده
In the present work, we have demonstrated in vivo an altered maturation of the thymic epithelium that results in defective T cell development which increases with age, in the thymus of Eph A4-deficient mice. The deficient thymi are hypocellular and show decreased proportions of double-positive (CD4+CD8+) cells which reach minimal numbers in 4-wk-old thymi. The EphA4 (-/-) phenotype correlates with an early block of T cell precursor differentiation that results in accumulation of CD44-CD25+ triple-negative cells and, sometimes, of CD44+CD25- triple-negative thymocytes as well as with increased numbers of apoptotic cells and an important reduction in the numbers of cycling thymocytes. Various approaches support a key role of the thymic epithelial cells in the observed phenotype. Thymic cytoarchitecture undergoes profound changes earlier than those found in the thymocyte maturation. Thymic cortex is extremely reduced and consists of densely packed thymic epithelial cells. Presumably the lack of forward Eph A4 signaling in the Eph A4 -/- epithelial cells affects their development and finally results in altered T cell development.
منابع مشابه
Axonal regeneration and lack of astrocytic gliosis in EphA4-deficient mice.
Spinal cord injury usually results in permanent paralysis because of lack of regrowth of damaged neurons. Here we demonstrate that adult mice lacking EphA4 (-/-), a molecule essential for correct guidance of spinal cord axons during development, exhibit axonal regeneration and functional recovery after spinal cord hemisection. Anterograde and retrograde tracing showed that axons from multiple p...
متن کاملAuditory brainstem responses are impaired in EphA4 and ephrin-B2 deficient mice.
The Eph receptor tyrosine kinases and their membrane-anchored ligands, ephrins, are signaling proteins that act as axon guidance molecules during chick auditory brainstem development. We recently showed that Eph proteins also affect patterns of neural activation in the mammalian brainstem. However, functional deficits in the brainstems of mutant mice have not been assessed physiologically. The ...
متن کاملDev104927 140..150
The phenotype of excitatory cerebral cortex neurons is specified at the progenitor level, orchestrated by various intrinsic and extrinsic factors. Here, we provide evidence for a subcortical contribution to cortical progenitor regulation by thalamic axons via ephrin A5-EphA4 interactions. Ephrin A5 is expressed by thalamic axons and represents a high-affinity ligand for EphA4 receptors detected...
متن کاملDev104927 1..11
The phenotype of excitatory cerebral cortex neurons is specified at the progenitor level, orchestrated by various intrinsic and extrinsic factors. Here, we provide evidence for a subcortical contribution to cortical progenitor regulation by thalamic axons via ephrin A5-EphA4 interactions. Ephrin A5 is expressed by thalamic axons and represents a high-affinity ligand for EphA4 receptors detected...
متن کاملThe Small GTPase RhoA Is Required for Proper Locomotor Circuit Assembly
The assembly of neuronal circuits during development requires the precise navigation of axons, which is controlled by attractive and repulsive guidance cues. In the developing spinal cord, ephrinB3 functions as a short-range repulsive cue that prevents EphA4 receptor-expressing corticospinal tract and spinal interneuron axons from crossing the midline, ensuring proper formation of locomotor cir...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of immunology
دوره 177 2 شماره
صفحات -
تاریخ انتشار 2006